# When do I use FindRoot instead of NSolve?

Like Solve, NSolve is designed primarily for solving polynomial equations.

``````In[1]:= NSolve[4 - r^2 == r, r]
Out[1]= {{r -> -2.56155}, {r -> 1.56155}}``````

The algebraic methods available in NSolve cannot handle general equations with transcendental functions—for example:

``````In[2]:= NSolve[4 Cos[r] == r, r]
NSolve::nsmet: This system cannot be solved with the methods available to NSolve.
Out[2]= NSolve[4 Cos[r] == r, r] ``````

FindRoot uses numerical methods for starting at an initial value for the independent variable and locating a solution:

``````In[3]:= fr = FindRoot[ 4 Cos[r] == r, {r, 1}]
Out[3]= {r -> 1.25235}  ``````

Verify that the returned value solves the equation:

``````In[4]:= (4 Cos[r] - r) /. fr // Chop
Out[4]= 0
``````

FindRoot finds one solution per evaluation. To obtain further solutions with FindRoot, initial values need to be chosen sufficiently close to the other root locations:

``````In[5]:= Plot[ 4 Cos[r] - r, {r, -2 Pi, 2 Pi}]
``````

``````In[6]:= FindRoot[ 4 Cos[r] == r, {r, -4}]
Out[6]= {r -> -3.5953}``````

``````In[7]:= FindRoot[ 4 Cos[r] == r, {r, -2}]
Out[7]= {r -> -2.13333}
``````

8am–5pm 美国中部时区

• 产品注册或激活
• 预售信息和订单
• 安装帮助和首次启动

## 高级技术支持 （面向特定用户）

8am–7pm 美国中部时区

8:30–10am & 11am–5pm 美国中部时区

• 优先技术支持
• Wolfram 专家助理专员
• Wolfram 语言编程帮助
• 高级安装支持